MakeItFrom.com
Menu (ESC)

Nickel 22 vs. 6105 Aluminum

Nickel 22 belongs to the nickel alloys classification, while 6105 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 22 and the bottom bar is 6105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 49
9.0 to 16
Fatigue Strength, MPa 330
95 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 560
120 to 170
Tensile Strength: Ultimate (UTS), MPa 790
190 to 280
Tensile Strength: Yield (Proof), MPa 360
120 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1360
600
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 10
180 to 190
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
46 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 12
8.3
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
25 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 300
100 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
51
Strength to Weight: Axial, points 25
20 to 29
Strength to Weight: Bending, points 21
28 to 35
Thermal Diffusivity, mm2/s 2.7
72 to 79
Thermal Shock Resistance, points 24
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
97.2 to 99
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 20 to 22.5
0 to 0.1
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 2.0 to 6.0
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.8
Manganese (Mn), % 0 to 0.015
0 to 0.1
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 50.8 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
0.6 to 1.0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15