MakeItFrom.com
Menu (ESC)

Nickel 22 vs. C14300 Copper

Nickel 22 belongs to the nickel alloys classification, while C14300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is nickel 22 and the bottom bar is C14300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 49
2.0 to 42
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
43
Shear Strength, MPa 560
150 to 260
Tensile Strength: Ultimate (UTS), MPa 790
220 to 460
Tensile Strength: Yield (Proof), MPa 360
76 to 430

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 990
220
Melting Completion (Liquidus), °C 1390
1080
Melting Onset (Solidus), °C 1360
1050
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 10
380
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
96
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
96

Otherwise Unclassified Properties

Base Metal Price, % relative 70
31
Density, g/cm3 8.9
9.0
Embodied Carbon, kg CO2/kg material 12
2.6
Embodied Energy, MJ/kg 170
41
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
9.0 to 72
Resilience: Unit (Modulus of Resilience), kJ/m3 300
25 to 810
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 25
6.8 to 14
Strength to Weight: Bending, points 21
9.1 to 15
Thermal Diffusivity, mm2/s 2.7
110
Thermal Shock Resistance, points 24
7.8 to 16

Alloy Composition

Cadmium (Cd), % 0
0.050 to 0.15
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
99.9 to 99.95
Iron (Fe), % 2.0 to 6.0
0
Manganese (Mn), % 0 to 0.015
0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 50.8 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0