MakeItFrom.com
Menu (ESC)

Nickel 22 vs. C28000 Muntz Metal

Nickel 22 belongs to the nickel alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 22 and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
100
Elongation at Break, % 49
10 to 45
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 84
40
Shear Strength, MPa 560
230 to 330
Tensile Strength: Ultimate (UTS), MPa 790
330 to 610
Tensile Strength: Yield (Proof), MPa 360
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 990
120
Melting Completion (Liquidus), °C 1390
900
Melting Onset (Solidus), °C 1360
900
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
31

Otherwise Unclassified Properties

Base Metal Price, % relative 70
23
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 170
46
Embodied Water, L/kg 300
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 300
110 to 670
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 22
20
Strength to Weight: Axial, points 25
11 to 21
Strength to Weight: Bending, points 21
13 to 20
Thermal Diffusivity, mm2/s 2.7
40
Thermal Shock Resistance, points 24
11 to 20

Alloy Composition

Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 2.0 to 6.0
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 0.015
0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 50.8 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0
0 to 0.3