MakeItFrom.com
Menu (ESC)

Nickel 22 vs. C43500 Brass

Nickel 22 belongs to the nickel alloys classification, while C43500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is nickel 22 and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 49
8.5 to 46
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 84
42
Shear Strength, MPa 560
220 to 310
Tensile Strength: Ultimate (UTS), MPa 790
320 to 530
Tensile Strength: Yield (Proof), MPa 360
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1390
1000
Melting Onset (Solidus), °C 1360
970
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
30

Otherwise Unclassified Properties

Base Metal Price, % relative 70
28
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 170
45
Embodied Water, L/kg 300
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 300
65 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 25
10 to 17
Strength to Weight: Bending, points 21
12 to 17
Thermal Diffusivity, mm2/s 2.7
37
Thermal Shock Resistance, points 24
11 to 18

Alloy Composition

Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
79 to 83
Iron (Fe), % 2.0 to 6.0
0 to 0.050
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 0.015
0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 50.8 to 63
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.6 to 1.2
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
15.4 to 20.4
Residuals, % 0
0 to 0.3