MakeItFrom.com
Menu (ESC)

Nickel 22 vs. C72700 Copper-nickel

Nickel 22 belongs to the nickel alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is nickel 22 and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 49
4.0 to 36
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
44
Shear Strength, MPa 560
310 to 620
Tensile Strength: Ultimate (UTS), MPa 790
460 to 1070
Tensile Strength: Yield (Proof), MPa 360
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1390
1100
Melting Onset (Solidus), °C 1360
930
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 10
54
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
11

Otherwise Unclassified Properties

Base Metal Price, % relative 70
36
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 12
4.0
Embodied Energy, MJ/kg 170
62
Embodied Water, L/kg 300
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 300
1420 to 4770
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 25
14 to 34
Strength to Weight: Bending, points 21
15 to 26
Thermal Diffusivity, mm2/s 2.7
16
Thermal Shock Resistance, points 24
16 to 38

Alloy Composition

Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
82.1 to 86
Iron (Fe), % 2.0 to 6.0
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 0.015
0.050 to 0.3
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 50.8 to 63
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
5.5 to 6.5
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3