MakeItFrom.com
Menu (ESC)

Nickel 22 vs. C82400 Copper

Nickel 22 belongs to the nickel alloys classification, while C82400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 22 and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 49
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
45
Tensile Strength: Ultimate (UTS), MPa 790
500 to 1030
Tensile Strength: Yield (Proof), MPa 360
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 990
270
Melting Completion (Liquidus), °C 1390
1000
Melting Onset (Solidus), °C 1360
900
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 10
130
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
26

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 12
8.9
Embodied Energy, MJ/kg 170
140
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 300
270 to 3870
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 25
16 to 33
Strength to Weight: Bending, points 21
16 to 26
Thermal Diffusivity, mm2/s 2.7
39
Thermal Shock Resistance, points 24
17 to 36

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 20 to 22.5
0 to 0.1
Cobalt (Co), % 0 to 2.5
0.2 to 0.65
Copper (Cu), % 0
96 to 98.2
Iron (Fe), % 2.0 to 6.0
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.015
0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 50.8 to 63
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5