MakeItFrom.com
Menu (ESC)

Nickel 242 vs. C82600 Copper

Nickel 242 belongs to the nickel alloys classification, while C82600 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 242 and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 45
1.0 to 20
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 84
46
Tensile Strength: Ultimate (UTS), MPa 820
570 to 1140
Tensile Strength: Yield (Proof), MPa 350
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 330
240
Maximum Temperature: Mechanical, °C 930
300
Melting Completion (Liquidus), °C 1380
950
Melting Onset (Solidus), °C 1290
860
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
19
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
20

Otherwise Unclassified Properties

Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 14
11
Embodied Energy, MJ/kg 180
180
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 280
430 to 4690
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 25
18 to 36
Strength to Weight: Bending, points 21
17 to 28
Thermal Diffusivity, mm2/s 3.1
37
Thermal Shock Resistance, points 25
19 to 39

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.15
Beryllium (Be), % 0
2.3 to 2.6
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 7.0 to 9.0
0 to 0.1
Cobalt (Co), % 0 to 1.0
0.35 to 0.65
Copper (Cu), % 0 to 0.5
94.9 to 97.2
Iron (Fe), % 0 to 2.0
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.8
0
Molybdenum (Mo), % 24 to 26
0
Nickel (Ni), % 59.3 to 69
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0.2 to 0.35
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5