MakeItFrom.com
Menu (ESC)

Nickel 242 vs. C87500 Brass

Nickel 242 belongs to the nickel alloys classification, while C87500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 242 and the bottom bar is C87500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 45
18
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 84
42
Tensile Strength: Ultimate (UTS), MPa 820
460
Tensile Strength: Yield (Proof), MPa 350
190

Thermal Properties

Latent Heat of Fusion, J/g 330
260
Maximum Temperature: Mechanical, °C 930
170
Melting Completion (Liquidus), °C 1380
920
Melting Onset (Solidus), °C 1290
820
Specific Heat Capacity, J/kg-K 400
410
Thermal Conductivity, W/m-K 11
28
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 75
27
Density, g/cm3 9.0
8.3
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 180
44
Embodied Water, L/kg 290
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
67
Resilience: Unit (Modulus of Resilience), kJ/m3 280
160
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 3.1
8.3
Thermal Shock Resistance, points 25
17

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.5
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 7.0 to 9.0
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
79 to 85
Iron (Fe), % 0 to 2.0
0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 0.8
0
Molybdenum (Mo), % 24 to 26
0
Nickel (Ni), % 59.3 to 69
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
3.0 to 5.0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5