MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 1070 Aluminum

Nickel 30 belongs to the nickel alloys classification, while 1070 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 1070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
4.5 to 39
Fatigue Strength, MPa 200
22 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 440
48 to 79
Tensile Strength: Ultimate (UTS), MPa 660
73 to 140
Tensile Strength: Yield (Proof), MPa 270
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1430
640
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
230
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
61
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
200

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.4
8.3
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 290
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
4.8 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 180
2.1 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
7.5 to 14
Strength to Weight: Bending, points 20
14 to 22
Thermal Diffusivity, mm2/s 2.7
94
Thermal Shock Resistance, points 18
3.3 to 6.1

Alloy Composition

Aluminum (Al), % 0
99.7 to 100
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0 to 0.040
Iron (Fe), % 13 to 17
0 to 0.25
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 0.030
0 to 0.030
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.030
Tungsten (W), % 1.5 to 4.0
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.040
Residuals, % 0
0 to 0.030