MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 2017 Aluminum

Nickel 30 belongs to the nickel alloys classification, while 2017 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 34
12 to 18
Fatigue Strength, MPa 200
90 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 440
130 to 260
Tensile Strength: Ultimate (UTS), MPa 660
190 to 430
Tensile Strength: Yield (Proof), MPa 270
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1020
190
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1430
510
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 9.4
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 290
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
24 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 180
41 to 470
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 22
17 to 40
Strength to Weight: Bending, points 20
24 to 42
Thermal Diffusivity, mm2/s 2.7
56
Thermal Shock Resistance, points 18
7.9 to 18

Alloy Composition

Aluminum (Al), % 0
91.6 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0 to 0.1
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
3.5 to 4.5
Iron (Fe), % 13 to 17
0 to 0.7
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 0.030
0.4 to 1.0
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0.2 to 0.8
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15