MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 4006 Aluminum

Nickel 30 belongs to the nickel alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 34
3.4 to 24
Fatigue Strength, MPa 200
35 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 440
70 to 91
Tensile Strength: Ultimate (UTS), MPa 660
110 to 160
Tensile Strength: Yield (Proof), MPa 270
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1020
160
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1430
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
220
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
56
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
180

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.0
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.4
8.1
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 180
28 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
11 to 16
Strength to Weight: Bending, points 20
19 to 24
Thermal Diffusivity, mm2/s 2.7
89
Thermal Shock Resistance, points 18
4.9 to 7.0

Alloy Composition

Aluminum (Al), % 0
97.4 to 98.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0 to 0.2
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0 to 0.1
Iron (Fe), % 13 to 17
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.030
0 to 0.050
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0.8 to 1.2
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15