MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 4104 Aluminum

Nickel 30 belongs to the nickel alloys classification, while 4104 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 4104 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 34
2.4
Fatigue Strength, MPa 200
42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 440
63
Tensile Strength: Ultimate (UTS), MPa 660
110
Tensile Strength: Yield (Proof), MPa 270
60

Thermal Properties

Latent Heat of Fusion, J/g 320
540
Maximum Temperature: Mechanical, °C 1020
160
Melting Completion (Liquidus), °C 1480
600
Melting Onset (Solidus), °C 1430
560
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
130
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 9.4
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 290
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 180
25
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 22
12
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 2.7
58
Thermal Shock Resistance, points 18
5.1

Alloy Composition

Aluminum (Al), % 0
85.8 to 90
Bismuth (Bi), % 0
0.020 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0 to 0.25
Iron (Fe), % 13 to 17
0 to 0.8
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 0.030
0 to 0.1
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
9.0 to 10.5
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15