MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 4145 Aluminum

Nickel 30 belongs to the nickel alloys classification, while 4145 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 4145 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 34
2.2
Fatigue Strength, MPa 200
48
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
28
Shear Strength, MPa 440
69
Tensile Strength: Ultimate (UTS), MPa 660
120
Tensile Strength: Yield (Proof), MPa 270
68

Thermal Properties

Latent Heat of Fusion, J/g 320
540
Maximum Temperature: Mechanical, °C 1020
160
Melting Completion (Liquidus), °C 1480
590
Melting Onset (Solidus), °C 1430
520
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 10
100
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
84

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.4
7.6
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 290
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 180
31
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
12
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 2.7
42
Thermal Shock Resistance, points 18
5.5

Alloy Composition

Aluminum (Al), % 0
83 to 87.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0 to 0.15
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
3.3 to 4.7
Iron (Fe), % 13 to 17
0 to 0.8
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 0.030
0 to 0.15
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
9.3 to 10.7
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15