MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 5252 Aluminum

Nickel 30 belongs to the nickel alloys classification, while 5252 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
4.5 to 11
Fatigue Strength, MPa 200
100 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
25
Shear Strength, MPa 440
140 to 160
Tensile Strength: Ultimate (UTS), MPa 660
230 to 290
Tensile Strength: Yield (Proof), MPa 270
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1020
180
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1430
610
Specific Heat Capacity, J/kg-K 450
910
Thermal Conductivity, W/m-K 10
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.4
8.7
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 290
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 180
210 to 430
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 22
23 to 30
Strength to Weight: Bending, points 20
31 to 36
Thermal Diffusivity, mm2/s 2.7
57
Thermal Shock Resistance, points 18
10 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 97.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0 to 0.1
Iron (Fe), % 13 to 17
0 to 0.1
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 0.030
0 to 0.1
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0 to 0.080
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1