MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 5652 Aluminum

Nickel 30 belongs to the nickel alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
6.8 to 25
Fatigue Strength, MPa 200
60 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 440
110 to 170
Tensile Strength: Ultimate (UTS), MPa 660
190 to 290
Tensile Strength: Yield (Proof), MPa 270
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1020
190
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1430
610
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.4
8.6
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 290
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 180
40 to 480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 22
20 to 30
Strength to Weight: Bending, points 20
27 to 36
Thermal Diffusivity, mm2/s 2.7
57
Thermal Shock Resistance, points 18
8.4 to 13

Alloy Composition

Aluminum (Al), % 0
95.8 to 97.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0.15 to 0.35
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0 to 0.040
Iron (Fe), % 13 to 17
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 0.030
0 to 0.010
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15