MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 6110A Aluminum

Nickel 30 belongs to the nickel alloys classification, while 6110A aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 6110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
11 to 18
Fatigue Strength, MPa 200
140 to 210
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 440
220 to 280
Tensile Strength: Ultimate (UTS), MPa 660
360 to 470
Tensile Strength: Yield (Proof), MPa 270
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1020
190
Melting Completion (Liquidus), °C 1480
650
Melting Onset (Solidus), °C 1430
600
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
42
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.4
8.4
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 290
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
47 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 180
450 to 1300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
36 to 47
Strength to Weight: Bending, points 20
41 to 48
Thermal Diffusivity, mm2/s 2.7
65
Thermal Shock Resistance, points 18
16 to 21

Alloy Composition

Aluminum (Al), % 0
94.8 to 98
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0.050 to 0.25
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0.3 to 0.8
Iron (Fe), % 13 to 17
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0 to 0.030
0.3 to 0.9
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0.7 to 1.1
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15