MakeItFrom.com
Menu (ESC)

Nickel 30 vs. 852.0 Aluminum

Nickel 30 belongs to the nickel alloys classification, while 852.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 30 and the bottom bar is 852.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
3.4
Fatigue Strength, MPa 200
73
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 440
130
Tensile Strength: Ultimate (UTS), MPa 660
200
Tensile Strength: Yield (Proof), MPa 270
150

Thermal Properties

Latent Heat of Fusion, J/g 320
370
Maximum Temperature: Mechanical, °C 1020
190
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1430
210
Specific Heat Capacity, J/kg-K 450
840
Thermal Conductivity, W/m-K 10
180
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 60
15
Density, g/cm3 8.5
3.2
Embodied Carbon, kg CO2/kg material 9.4
8.5
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
6.2
Resilience: Unit (Modulus of Resilience), kJ/m3 180
160
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 23
43
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 2.7
65
Thermal Shock Resistance, points 18
8.7

Alloy Composition

Aluminum (Al), % 0
86.6 to 91.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
1.7 to 2.3
Iron (Fe), % 13 to 17
0 to 0.7
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0 to 0.030
0 to 0.1
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0.9 to 1.5
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 1.5 to 4.0
0
Residuals, % 0
0 to 0.3