MakeItFrom.com
Menu (ESC)

Nickel 30 vs. AWS E2593

Nickel 30 belongs to the nickel alloys classification, while AWS E2593 belongs to the iron alloys. They have 56% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is nickel 30 and the bottom bar is AWS E2593.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
17
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 82
80
Tensile Strength: Ultimate (UTS), MPa 660
850

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Melting Completion (Liquidus), °C 1480
1430
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 10
16
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Base Metal Price, % relative 60
22
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 9.4
4.2
Embodied Energy, MJ/kg 130
59
Embodied Water, L/kg 290
190

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 22
30
Strength to Weight: Bending, points 20
25
Thermal Diffusivity, mm2/s 2.7
4.3
Thermal Shock Resistance, points 18
21

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.040
Chromium (Cr), % 28 to 31.5
24 to 27
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
1.5 to 3.0
Iron (Fe), % 13 to 17
52.7 to 62.5
Manganese (Mn), % 0 to 0.030
0.5 to 1.5
Molybdenum (Mo), % 4.0 to 6.0
2.9 to 3.9
Nickel (Ni), % 30.2 to 52.2
8.5 to 10.5
Niobium (Nb), % 0.3 to 1.5
0
Nitrogen (N), % 0
0.080 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 1.5 to 4.0
0