MakeItFrom.com
Menu (ESC)

Nickel 30 vs. C17510 Copper

Nickel 30 belongs to the nickel alloys classification, while C17510 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 30 and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
5.4 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 82
44
Shear Strength, MPa 440
210 to 500
Tensile Strength: Ultimate (UTS), MPa 660
310 to 860
Tensile Strength: Yield (Proof), MPa 270
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1020
220
Melting Completion (Liquidus), °C 1480
1070
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
210
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 60
49
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 9.4
4.2
Embodied Energy, MJ/kg 130
65
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 180
64 to 2410
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
9.7 to 27
Strength to Weight: Bending, points 20
11 to 23
Thermal Diffusivity, mm2/s 2.7
60
Thermal Shock Resistance, points 18
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0 to 0.3
Copper (Cu), % 1.0 to 2.4
95.9 to 98.4
Iron (Fe), % 13 to 17
0 to 0.1
Manganese (Mn), % 0 to 0.030
0
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
1.4 to 2.2
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Residuals, % 0
0 to 0.5