MakeItFrom.com
Menu (ESC)

Nickel 30 vs. C19700 Copper

Nickel 30 belongs to the nickel alloys classification, while C19700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 30 and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
2.4 to 13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 82
43
Shear Strength, MPa 440
240 to 300
Tensile Strength: Ultimate (UTS), MPa 660
400 to 530
Tensile Strength: Yield (Proof), MPa 270
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1020
200
Melting Completion (Liquidus), °C 1480
1090
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
250
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 9.4
2.6
Embodied Energy, MJ/kg 130
41
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 180
460 to 1160
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
12 to 16
Strength to Weight: Bending, points 20
14 to 16
Thermal Diffusivity, mm2/s 2.7
73
Thermal Shock Resistance, points 18
14 to 19

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0 to 0.050
Copper (Cu), % 1.0 to 2.4
97.4 to 99.59
Iron (Fe), % 13 to 17
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 0.030
0 to 0.050
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0 to 0.050
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0.1 to 0.4
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.2
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2