MakeItFrom.com
Menu (ESC)

Nickel 30 vs. C32000 Brass

Nickel 30 belongs to the nickel alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is nickel 30 and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
6.8 to 29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
41
Shear Strength, MPa 440
180 to 280
Tensile Strength: Ultimate (UTS), MPa 660
270 to 470
Tensile Strength: Yield (Proof), MPa 270
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1480
1020
Melting Onset (Solidus), °C 1430
990
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 10
160
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
36
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
37

Otherwise Unclassified Properties

Base Metal Price, % relative 60
28
Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 9.4
2.6
Embodied Energy, MJ/kg 130
42
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 180
28 to 680
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
8.8 to 15
Strength to Weight: Bending, points 20
11 to 16
Thermal Diffusivity, mm2/s 2.7
47
Thermal Shock Resistance, points 18
9.5 to 16

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
83.5 to 86.5
Iron (Fe), % 13 to 17
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 0 to 0.030
0
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0 to 0.25
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
10.6 to 15
Residuals, % 0
0 to 0.4