MakeItFrom.com
Menu (ESC)

Nickel 30 vs. C65100 Bronze

Nickel 30 belongs to the nickel alloys classification, while C65100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 30 and the bottom bar is C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
2.4 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 82
43
Shear Strength, MPa 440
200 to 350
Tensile Strength: Ultimate (UTS), MPa 660
280 to 560
Tensile Strength: Yield (Proof), MPa 270
95 to 440

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 1020
200
Melting Completion (Liquidus), °C 1480
1060
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
57
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 9.4
2.6
Embodied Energy, MJ/kg 130
41
Embodied Water, L/kg 290
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
39 to 820
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
8.7 to 18
Strength to Weight: Bending, points 20
11 to 17
Thermal Diffusivity, mm2/s 2.7
16
Thermal Shock Resistance, points 18
9.5 to 19

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 31.5
0
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
94.5 to 99.2
Iron (Fe), % 13 to 17
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.030
0 to 0.7
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 30.2 to 52.2
0
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0.8 to 2.0
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 1.5 to 4.0
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5