MakeItFrom.com
Menu (ESC)

Nickel 30 vs. S42035 Stainless Steel

Nickel 30 belongs to the nickel alloys classification, while S42035 stainless steel belongs to the iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 30 and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
18
Fatigue Strength, MPa 200
260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 82
77
Shear Strength, MPa 440
390
Tensile Strength: Ultimate (UTS), MPa 660
630
Tensile Strength: Yield (Proof), MPa 270
430

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 1020
810
Melting Completion (Liquidus), °C 1480
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 10
27
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 9.4
2.4
Embodied Energy, MJ/kg 130
34
Embodied Water, L/kg 290
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
100
Resilience: Unit (Modulus of Resilience), kJ/m3 180
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 22
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 2.7
7.2
Thermal Shock Resistance, points 18
22

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 28 to 31.5
13.5 to 15.5
Cobalt (Co), % 0 to 5.0
0
Copper (Cu), % 1.0 to 2.4
0
Iron (Fe), % 13 to 17
78.1 to 85
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 4.0 to 6.0
0.2 to 1.2
Nickel (Ni), % 30.2 to 52.2
1.0 to 2.5
Niobium (Nb), % 0.3 to 1.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0.3 to 0.5
Tungsten (W), % 1.5 to 4.0
0