MakeItFrom.com
Menu (ESC)

Nickel 333 vs. 4147 Aluminum

Nickel 333 belongs to the nickel alloys classification, while 4147 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 333 and the bottom bar is 4147 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 34
3.3
Fatigue Strength, MPa 200
42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 420
63
Tensile Strength: Ultimate (UTS), MPa 630
110
Tensile Strength: Yield (Proof), MPa 270
59

Thermal Properties

Latent Heat of Fusion, J/g 320
570
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1460
580
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.5
Embodied Carbon, kg CO2/kg material 8.5
7.7
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 270
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
3.1
Resilience: Unit (Modulus of Resilience), kJ/m3 180
24
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 23
55
Strength to Weight: Axial, points 21
12
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 2.9
58
Thermal Shock Resistance, points 16
5.2

Alloy Composition

Aluminum (Al), % 0
85 to 88.9
Beryllium (Be), % 0
0 to 0.00030
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 27
0
Cobalt (Co), % 2.5 to 4.0
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 9.3 to 24.5
0 to 0.8
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 44 to 48
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.5
11 to 13
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 2.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15