MakeItFrom.com
Menu (ESC)

Nickel 333 vs. 5050 Aluminum

Nickel 333 belongs to the nickel alloys classification, while 5050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 333 and the bottom bar is 5050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
1.7 to 22
Fatigue Strength, MPa 200
45 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 420
91 to 140
Tensile Strength: Ultimate (UTS), MPa 630
140 to 250
Tensile Strength: Yield (Proof), MPa 270
50 to 210

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
630
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 11
190
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
50
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
170

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 8.5
8.4
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
4.1 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 180
18 to 330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 21
15 to 26
Strength to Weight: Bending, points 19
22 to 33
Thermal Diffusivity, mm2/s 2.9
79
Thermal Shock Resistance, points 16
6.3 to 11

Alloy Composition

Aluminum (Al), % 0
96.3 to 98.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 27
0 to 0.1
Cobalt (Co), % 2.5 to 4.0
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 9.3 to 24.5
0 to 0.7
Magnesium (Mg), % 0
1.1 to 1.8
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 44 to 48
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 2.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15