MakeItFrom.com
Menu (ESC)

Nickel 333 vs. A384.0 Aluminum

Nickel 333 belongs to the nickel alloys classification, while A384.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 333 and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
74
Elongation at Break, % 34
2.5
Fatigue Strength, MPa 200
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
28
Shear Strength, MPa 420
200
Tensile Strength: Ultimate (UTS), MPa 630
330
Tensile Strength: Yield (Proof), MPa 270
170

Thermal Properties

Latent Heat of Fusion, J/g 320
550
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1460
610
Melting Onset (Solidus), °C 1410
510
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 11
96
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
23
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
73

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 8.5
7.5
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 270
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 180
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 21
32
Strength to Weight: Bending, points 19
38
Thermal Diffusivity, mm2/s 2.9
39
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0
79.3 to 86.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 27
0
Cobalt (Co), % 2.5 to 4.0
0
Copper (Cu), % 0
3.0 to 4.5
Iron (Fe), % 9.3 to 24.5
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 44 to 48
0 to 0.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.5
10.5 to 12
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.35
Tungsten (W), % 2.5 to 4.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5