MakeItFrom.com
Menu (ESC)

Nickel 333 vs. AWS ER70S-B2L

Nickel 333 belongs to the nickel alloys classification, while AWS ER70S-B2L belongs to the iron alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 333 and the bottom bar is AWS ER70S-B2L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 34
22
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Tensile Strength: Ultimate (UTS), MPa 630
590
Tensile Strength: Yield (Proof), MPa 270
450

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 11
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 55
3.0
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.6
Embodied Energy, MJ/kg 120
21
Embodied Water, L/kg 270
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 16
17

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 24 to 27
1.2 to 1.5
Cobalt (Co), % 2.5 to 4.0
0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 9.3 to 24.5
95.3 to 97.6
Manganese (Mn), % 0 to 2.0
0.4 to 0.7
Molybdenum (Mo), % 2.5 to 4.0
0.4 to 0.65
Nickel (Ni), % 44 to 48
0 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 1.5
0.4 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.025
Tungsten (W), % 2.5 to 4.0
0
Residuals, % 0
0 to 0.5