MakeItFrom.com
Menu (ESC)

Nickel 333 vs. EN AC-43400 Aluminum

Nickel 333 belongs to the nickel alloys classification, while EN AC-43400 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 333 and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 200
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 630
270
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 320
540
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 8.5
7.8
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 180
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 21
29
Strength to Weight: Bending, points 19
36
Thermal Diffusivity, mm2/s 2.9
59
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 0
86 to 90.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 27
0
Cobalt (Co), % 2.5 to 4.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 9.3 to 24.5
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 44 to 48
0 to 0.15
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.5
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15