MakeItFrom.com
Menu (ESC)

Nickel 333 vs. EN AC-47000 Aluminum

Nickel 333 belongs to the nickel alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 333 and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 34
1.7
Fatigue Strength, MPa 200
68
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 630
180
Tensile Strength: Yield (Proof), MPa 270
97

Thermal Properties

Latent Heat of Fusion, J/g 320
570
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1460
590
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 8.5
7.7
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 270
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 180
65
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 19
27
Thermal Diffusivity, mm2/s 2.9
55
Thermal Shock Resistance, points 16
8.3

Alloy Composition

Aluminum (Al), % 0
82.1 to 89.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 27
0 to 0.1
Cobalt (Co), % 2.5 to 4.0
0
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 9.3 to 24.5
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0 to 2.0
0.050 to 0.55
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 44 to 48
0 to 0.3
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.5
10.5 to 13.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25