MakeItFrom.com
Menu (ESC)

Nickel 333 vs. C69700 Brass

Nickel 333 belongs to the nickel alloys classification, while C69700 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 333 and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
25
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 81
41
Shear Strength, MPa 420
300
Tensile Strength: Ultimate (UTS), MPa 630
470
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1460
930
Melting Onset (Solidus), °C 1410
880
Specific Heat Capacity, J/kg-K 450
400
Thermal Conductivity, W/m-K 11
43
Thermal Expansion, µm/m-K 13
19

Otherwise Unclassified Properties

Base Metal Price, % relative 55
26
Density, g/cm3 8.5
8.3
Embodied Carbon, kg CO2/kg material 8.5
2.7
Embodied Energy, MJ/kg 120
44
Embodied Water, L/kg 270
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
99
Resilience: Unit (Modulus of Resilience), kJ/m3 180
250
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 21
16
Strength to Weight: Bending, points 19
16
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 16
16

Alloy Composition

Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 27
0
Cobalt (Co), % 2.5 to 4.0
0
Copper (Cu), % 0
75 to 80
Iron (Fe), % 9.3 to 24.5
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 2.0
0 to 0.4
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 44 to 48
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.5
2.5 to 3.5
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 2.5 to 4.0
0
Zinc (Zn), % 0
13.9 to 22
Residuals, % 0
0 to 0.5