MakeItFrom.com
Menu (ESC)

Nickel 333 vs. C70250 Copper

Nickel 333 belongs to the nickel alloys classification, while C70250 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 333 and the bottom bar is C70250 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 81
44
Tensile Strength: Ultimate (UTS), MPa 630
520 to 740

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1010
210
Melting Completion (Liquidus), °C 1460
1100
Melting Onset (Solidus), °C 1410
1080
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 11
170
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
36 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
37 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 55
31
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 8.5
2.9
Embodied Energy, MJ/kg 120
45
Embodied Water, L/kg 270
310

Common Calculations

Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 21
16 to 23
Strength to Weight: Bending, points 19
16 to 21
Thermal Diffusivity, mm2/s 2.9
49
Thermal Shock Resistance, points 16
18 to 26

Alloy Composition

Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 27
0
Cobalt (Co), % 2.5 to 4.0
0
Copper (Cu), % 0
92.7 to 97.5
Iron (Fe), % 9.3 to 24.5
0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.050 to 0.3
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 44 to 48
2.2 to 4.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.5
0.25 to 1.2
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 2.5 to 4.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5