MakeItFrom.com
Menu (ESC)

Nickel 333 vs. C82000 Copper

Nickel 333 belongs to the nickel alloys classification, while C82000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 333 and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
8.0 to 20
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 85
55 to 95
Shear Modulus, GPa 81
45
Tensile Strength: Ultimate (UTS), MPa 630
350 to 690
Tensile Strength: Yield (Proof), MPa 270
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1010
220
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1410
970
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 11
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
46

Otherwise Unclassified Properties

Base Metal Price, % relative 55
60
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 8.5
5.0
Embodied Energy, MJ/kg 120
77
Embodied Water, L/kg 270
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 180
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 21
11 to 22
Strength to Weight: Bending, points 19
12 to 20
Thermal Diffusivity, mm2/s 2.9
76
Thermal Shock Resistance, points 16
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 27
0 to 0.1
Cobalt (Co), % 2.5 to 4.0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 9.3 to 24.5
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 44 to 48
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Tungsten (W), % 2.5 to 4.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5