MakeItFrom.com
Menu (ESC)

Nickel 333 vs. R30075 Cobalt

Nickel 333 belongs to the nickel alloys classification, while R30075 cobalt belongs to the cobalt alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 333 and the bottom bar is R30075 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
210 to 250
Elongation at Break, % 34
12
Fatigue Strength, MPa 200
250 to 840
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
82 to 98
Tensile Strength: Ultimate (UTS), MPa 630
780 to 1280
Tensile Strength: Yield (Proof), MPa 270
480 to 840

Thermal Properties

Latent Heat of Fusion, J/g 320
320
Melting Completion (Liquidus), °C 1460
1360
Melting Onset (Solidus), °C 1410
1290
Specific Heat Capacity, J/kg-K 450
450
Thermal Conductivity, W/m-K 11
13
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.1

Otherwise Unclassified Properties

Density, g/cm3 8.5
8.4
Embodied Carbon, kg CO2/kg material 8.5
8.1
Embodied Energy, MJ/kg 120
110
Embodied Water, L/kg 270
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
84 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 180
560 to 1410
Stiffness to Weight: Axial, points 14
14 to 17
Stiffness to Weight: Bending, points 23
24 to 25
Strength to Weight: Axial, points 21
26 to 42
Strength to Weight: Bending, points 19
22 to 31
Thermal Diffusivity, mm2/s 2.9
3.5
Thermal Shock Resistance, points 16
21 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.1
0 to 0.35
Chromium (Cr), % 24 to 27
27 to 30
Cobalt (Co), % 2.5 to 4.0
58.7 to 68
Iron (Fe), % 9.3 to 24.5
0 to 0.75
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 4.0
5.0 to 7.0
Nickel (Ni), % 44 to 48
0 to 0.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 2.5 to 4.0
0 to 0.2