MakeItFrom.com
Menu (ESC)

Nickel 59 vs. A242.0 Aluminum

Nickel 59 belongs to the nickel alloys classification, while A242.0 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 59 and the bottom bar is A242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
73
Elongation at Break, % 50
1.6
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 780
220

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 990
210
Melting Completion (Liquidus), °C 1500
680
Melting Onset (Solidus), °C 1450
550
Specific Heat Capacity, J/kg-K 430
870
Thermal Conductivity, W/m-K 10
140
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
12
Density, g/cm3 8.7
3.1
Embodied Carbon, kg CO2/kg material 12
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1130

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
45
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 2.7
52
Thermal Shock Resistance, points 15
9.3

Alloy Composition

Aluminum (Al), % 0.1 to 0.4
89.3 to 93.1
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0.15 to 0.25
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
3.7 to 4.5
Iron (Fe), % 0 to 1.5
0 to 0.8
Magnesium (Mg), % 0
1.2 to 1.7
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.2 to 62.9
1.8 to 2.3
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0.070 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15