MakeItFrom.com
Menu (ESC)

Nickel 59 vs. Grade 3 Titanium

Nickel 59 belongs to the nickel alloys classification, while grade 3 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 59 and the bottom bar is grade 3 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 50
21
Fatigue Strength, MPa 320
300
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 84
39
Shear Strength, MPa 560
320
Tensile Strength: Ultimate (UTS), MPa 780
510
Tensile Strength: Yield (Proof), MPa 350
440

Thermal Properties

Latent Heat of Fusion, J/g 330
420
Maximum Temperature: Mechanical, °C 990
320
Melting Completion (Liquidus), °C 1500
1660
Melting Onset (Solidus), °C 1450
1610
Specific Heat Capacity, J/kg-K 430
540
Thermal Conductivity, W/m-K 10
21
Thermal Expansion, µm/m-K 17
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 65
37
Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 12
31
Embodied Energy, MJ/kg 160
510
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
100
Resilience: Unit (Modulus of Resilience), kJ/m3 280
910
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 25
32
Strength to Weight: Bending, points 22
32
Thermal Diffusivity, mm2/s 2.7
8.6
Thermal Shock Resistance, points 15
37

Alloy Composition

Aluminum (Al), % 0.1 to 0.4
0
Carbon (C), % 0 to 0.010
0 to 0.080
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.5
0 to 0.3
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.2 to 62.9
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4