MakeItFrom.com
Menu (ESC)

Nickel 59 vs. C19700 Copper

Nickel 59 belongs to the nickel alloys classification, while C19700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 59 and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 50
2.4 to 13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
43
Shear Strength, MPa 560
240 to 300
Tensile Strength: Ultimate (UTS), MPa 780
400 to 530
Tensile Strength: Yield (Proof), MPa 350
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1500
1090
Melting Onset (Solidus), °C 1450
1040
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 10
250
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 65
30
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 12
2.6
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 280
460 to 1160
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 25
12 to 16
Strength to Weight: Bending, points 22
14 to 16
Thermal Diffusivity, mm2/s 2.7
73
Thermal Shock Resistance, points 15
14 to 19

Alloy Composition

Aluminum (Al), % 0.1 to 0.4
0
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 0.3
0 to 0.050
Copper (Cu), % 0 to 0.5
97.4 to 99.59
Iron (Fe), % 0 to 1.5
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 0.5
0 to 0.050
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.2 to 62.9
0 to 0.050
Phosphorus (P), % 0 to 0.015
0.1 to 0.4
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2