MakeItFrom.com
Menu (ESC)

Nickel 59 vs. C83600 Ounce Metal

Nickel 59 belongs to the nickel alloys classification, while C83600 ounce metal belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 59 and the bottom bar is C83600 ounce metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 50
21
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
39
Tensile Strength: Ultimate (UTS), MPa 780
250
Tensile Strength: Yield (Proof), MPa 350
120

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1500
1010
Melting Onset (Solidus), °C 1450
850
Specific Heat Capacity, J/kg-K 430
370
Thermal Conductivity, W/m-K 10
72
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 65
31
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 12
3.1
Embodied Energy, MJ/kg 160
50
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
43
Resilience: Unit (Modulus of Resilience), kJ/m3 280
70
Stiffness to Weight: Axial, points 14
6.7
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 25
7.9
Strength to Weight: Bending, points 22
10
Thermal Diffusivity, mm2/s 2.7
22
Thermal Shock Resistance, points 15
9.3

Alloy Composition

Aluminum (Al), % 0.1 to 0.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
84 to 86
Iron (Fe), % 0 to 1.5
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.2 to 62.9
0 to 1.0
Phosphorus (P), % 0 to 0.015
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.7