MakeItFrom.com
Menu (ESC)

Nickel 600 vs. 1050A Aluminum

Nickel 600 belongs to the nickel alloys classification, while 1050A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 600 and the bottom bar is 1050A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 3.4 to 35
1.1 to 33
Fatigue Strength, MPa 220 to 300
22 to 55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 430 to 570
44 to 97
Tensile Strength: Ultimate (UTS), MPa 650 to 990
68 to 170
Tensile Strength: Yield (Proof), MPa 270 to 760
22 to 150

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
660
Melting Onset (Solidus), °C 1350
650
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 14
230
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
59
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
200

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.0
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.0
8.2
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 250
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
1.9 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
3.7 to 160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 21 to 32
6.9 to 18
Strength to Weight: Bending, points 20 to 26
14 to 25
Thermal Diffusivity, mm2/s 3.6
94
Thermal Shock Resistance, points 19 to 29
3.0 to 7.6

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 6.0 to 10
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 72 to 80
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.070

Comparable Variants