MakeItFrom.com
Menu (ESC)

Nickel 600 vs. 328.0 Aluminum

Nickel 600 belongs to the nickel alloys classification, while 328.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 600 and the bottom bar is 328.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 3.4 to 35
1.6 to 2.1
Fatigue Strength, MPa 220 to 300
55 to 80
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 650 to 990
200 to 270
Tensile Strength: Yield (Proof), MPa 270 to 760
120 to 170

Thermal Properties

Latent Heat of Fusion, J/g 310
510
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
620
Melting Onset (Solidus), °C 1350
560
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
99

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.0
7.8
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 250
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
2.8 to 5.0
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
92 to 200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 21 to 32
21 to 28
Strength to Weight: Bending, points 20 to 26
28 to 34
Thermal Diffusivity, mm2/s 3.6
50
Thermal Shock Resistance, points 19 to 29
9.2 to 12

Alloy Composition

Aluminum (Al), % 0
84.5 to 91.1
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 14 to 17
0 to 0.35
Copper (Cu), % 0 to 0.5
1.0 to 2.0
Iron (Fe), % 6.0 to 10
0 to 1.0
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.0
0.2 to 0.6
Nickel (Ni), % 72 to 80
0 to 0.25
Silicon (Si), % 0 to 0.5
7.5 to 8.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5