MakeItFrom.com
Menu (ESC)

Nickel 600 vs. 357.0 Aluminum

Nickel 600 belongs to the nickel alloys classification, while 357.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 600 and the bottom bar is 357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 3.4 to 35
3.4
Fatigue Strength, MPa 220 to 300
76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 430 to 570
200
Tensile Strength: Ultimate (UTS), MPa 650 to 990
350
Tensile Strength: Yield (Proof), MPa 270 to 760
300

Thermal Properties

Latent Heat of Fusion, J/g 310
500
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
620
Melting Onset (Solidus), °C 1350
560
Specific Heat Capacity, J/kg-K 460
910
Thermal Conductivity, W/m-K 14
150
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
39
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 9.0
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 250
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
11
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
620
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 21 to 32
38
Strength to Weight: Bending, points 20 to 26
43
Thermal Diffusivity, mm2/s 3.6
64
Thermal Shock Resistance, points 19 to 29
17

Alloy Composition

Aluminum (Al), % 0
91.3 to 93.1
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 6.0 to 10
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.030
Nickel (Ni), % 72 to 80
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15