MakeItFrom.com
Menu (ESC)

Nickel 600 vs. 5182 Aluminum

Nickel 600 belongs to the nickel alloys classification, while 5182 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 600 and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 3.4 to 35
1.1 to 12
Fatigue Strength, MPa 220 to 300
100 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
25
Shear Strength, MPa 430 to 570
170 to 240
Tensile Strength: Ultimate (UTS), MPa 650 to 990
280 to 420
Tensile Strength: Yield (Proof), MPa 270 to 760
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1350
590
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
94

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.0
8.9
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 250
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
120 to 950
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 21 to 32
29 to 44
Strength to Weight: Bending, points 20 to 26
36 to 47
Thermal Diffusivity, mm2/s 3.6
53
Thermal Shock Resistance, points 19 to 29
12 to 19

Alloy Composition

Aluminum (Al), % 0
93.2 to 95.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 14 to 17
0 to 0.1
Copper (Cu), % 0 to 0.5
0 to 0.15
Iron (Fe), % 6.0 to 10
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Nickel (Ni), % 72 to 80
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants