MakeItFrom.com
Menu (ESC)

Nickel 600 vs. 7021 Aluminum

Nickel 600 belongs to the nickel alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 600 and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 3.4 to 35
9.4
Fatigue Strength, MPa 220 to 300
150
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 75
26
Shear Strength, MPa 430 to 570
270
Tensile Strength: Ultimate (UTS), MPa 650 to 990
460
Tensile Strength: Yield (Proof), MPa 270 to 760
390

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1350
510
Specific Heat Capacity, J/kg-K 460
870
Thermal Conductivity, W/m-K 14
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
120

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
2.9
Embodied Carbon, kg CO2/kg material 9.0
8.3
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 250
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
41
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
1110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 21 to 32
44
Strength to Weight: Bending, points 20 to 26
45
Thermal Diffusivity, mm2/s 3.6
59
Thermal Shock Resistance, points 19 to 29
20

Alloy Composition

Aluminum (Al), % 0
90.7 to 93.7
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 14 to 17
0 to 0.050
Copper (Cu), % 0 to 0.5
0 to 0.25
Iron (Fe), % 6.0 to 10
0 to 0.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 72 to 80
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15