MakeItFrom.com
Menu (ESC)

Nickel 600 vs. 710.0 Aluminum

Nickel 600 belongs to the nickel alloys classification, while 710.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 600 and the bottom bar is 710.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 3.4 to 35
2.2 to 3.6
Fatigue Strength, MPa 220 to 300
55 to 110
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 75
26
Shear Strength, MPa 430 to 570
180
Tensile Strength: Ultimate (UTS), MPa 650 to 990
240 to 250
Tensile Strength: Yield (Proof), MPa 270 to 760
160

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1350
610
Specific Heat Capacity, J/kg-K 460
870
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 9.0
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 250
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
4.9 to 7.9
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
180 to 190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 21 to 32
23
Strength to Weight: Bending, points 20 to 26
29
Thermal Diffusivity, mm2/s 3.6
53
Thermal Shock Resistance, points 19 to 29
10 to 11

Alloy Composition

Aluminum (Al), % 0
90.5 to 93.1
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
0.35 to 0.65
Iron (Fe), % 6.0 to 10
0 to 0.5
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 72 to 80
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15