MakeItFrom.com
Menu (ESC)

Nickel 600 vs. EN 1.0258 Steel

Nickel 600 belongs to the nickel alloys classification, while EN 1.0258 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 600 and the bottom bar is EN 1.0258 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 3.4 to 35
23
Fatigue Strength, MPa 220 to 300
200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 430 to 570
310
Tensile Strength: Ultimate (UTS), MPa 650 to 990
490
Tensile Strength: Yield (Proof), MPa 270 to 760
290

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 14
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 55
2.1
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 9.0
1.5
Embodied Energy, MJ/kg 130
19
Embodied Water, L/kg 250
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
95
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 21 to 32
17
Strength to Weight: Bending, points 20 to 26
18
Thermal Diffusivity, mm2/s 3.6
13
Thermal Shock Resistance, points 19 to 29
16

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.2
Chromium (Cr), % 14 to 17
0 to 0.3
Copper (Cu), % 0 to 0.5
0 to 0.3
Iron (Fe), % 6.0 to 10
96.9 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 72 to 80
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020