MakeItFrom.com
Menu (ESC)

Nickel 600 vs. Grade Ti-Pd7B Titanium

Nickel 600 belongs to the nickel alloys classification, while grade Ti-Pd7B titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is nickel 600 and the bottom bar is grade Ti-Pd7B titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 3.4 to 35
17
Fatigue Strength, MPa 220 to 300
200
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 650 to 990
390
Tensile Strength: Yield (Proof), MPa 270 to 760
310

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1410
1660
Melting Onset (Solidus), °C 1350
1610
Specific Heat Capacity, J/kg-K 460
540
Thermal Conductivity, W/m-K 14
22
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
7.1

Otherwise Unclassified Properties

Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 9.0
49
Embodied Energy, MJ/kg 130
840
Embodied Water, L/kg 250
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
62
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 21 to 32
24
Strength to Weight: Bending, points 20 to 26
26
Thermal Diffusivity, mm2/s 3.6
8.9
Thermal Shock Resistance, points 19 to 29
30

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.1
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 6.0 to 10
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 72 to 80
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4