MakeItFrom.com
Menu (ESC)

Nickel 600 vs. C36000 Brass

Nickel 600 belongs to the nickel alloys classification, while C36000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 600 and the bottom bar is C36000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 3.4 to 35
5.8 to 23
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 75
39
Shear Strength, MPa 430 to 570
210 to 310
Tensile Strength: Ultimate (UTS), MPa 650 to 990
330 to 530
Tensile Strength: Yield (Proof), MPa 270 to 760
140 to 260

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1410
900
Melting Onset (Solidus), °C 1350
890
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
29

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 9.0
2.6
Embodied Energy, MJ/kg 130
45
Embodied Water, L/kg 250
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
25 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
89 to 340
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 21 to 32
11 to 18
Strength to Weight: Bending, points 20 to 26
13 to 18
Thermal Diffusivity, mm2/s 3.6
37
Thermal Shock Resistance, points 19 to 29
11 to 18

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
60 to 63
Iron (Fe), % 6.0 to 10
0 to 0.35
Lead (Pb), % 0
2.5 to 3.7
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 72 to 80
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
32.5 to 37.5
Residuals, % 0
0 to 0.5