Nickel 600 vs. R30035 Cobalt
Nickel 600 belongs to the nickel alloys classification, while R30035 cobalt belongs to the cobalt alloys. They have 51% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is nickel 600 and the bottom bar is R30035 cobalt.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
220 to 230 |
Elongation at Break, % | 3.4 to 35 | |
9.0 to 46 |
Fatigue Strength, MPa | 220 to 300 | |
170 to 740 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 75 | |
84 to 89 |
Tensile Strength: Ultimate (UTS), MPa | 650 to 990 | |
900 to 1900 |
Tensile Strength: Yield (Proof), MPa | 270 to 760 | |
300 to 1650 |
Thermal Properties
Latent Heat of Fusion, J/g | 310 | |
320 |
Melting Completion (Liquidus), °C | 1410 | |
1440 |
Melting Onset (Solidus), °C | 1350 | |
1320 |
Specific Heat Capacity, J/kg-K | 460 | |
440 |
Thermal Conductivity, W/m-K | 14 | |
11 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.7 | |
1.7 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 1.8 | |
1.8 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 55 | |
100 |
Density, g/cm3 | 8.5 | |
8.7 |
Embodied Carbon, kg CO2/kg material | 9.0 | |
10 |
Embodied Energy, MJ/kg | 130 | |
140 |
Embodied Water, L/kg | 250 | |
410 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 31 to 180 | |
160 to 320 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 190 to 1490 | |
210 to 5920 |
Stiffness to Weight: Axial, points | 13 | |
14 to 15 |
Stiffness to Weight: Bending, points | 23 | |
23 to 24 |
Strength to Weight: Axial, points | 21 to 32 | |
29 to 61 |
Strength to Weight: Bending, points | 20 to 26 | |
24 to 39 |
Thermal Diffusivity, mm2/s | 3.6 | |
3.0 |
Thermal Shock Resistance, points | 19 to 29 | |
23 to 46 |
Alloy Composition
Boron (B), % | 0 | |
0 to 0.015 |
Carbon (C), % | 0 to 0.15 | |
0 to 0.025 |
Chromium (Cr), % | 14 to 17 | |
19 to 21 |
Cobalt (Co), % | 0 | |
29.1 to 39 |
Copper (Cu), % | 0 to 0.5 | |
0 |
Iron (Fe), % | 6.0 to 10 | |
0 to 1.0 |
Manganese (Mn), % | 0 to 1.0 | |
0 to 0.15 |
Molybdenum (Mo), % | 0 | |
9.0 to 10.5 |
Nickel (Ni), % | 72 to 80 | |
33 to 37 |
Phosphorus (P), % | 0 | |
0 to 0.015 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.15 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.010 |
Titanium (Ti), % | 0 | |
0 to 1.0 |