MakeItFrom.com
Menu (ESC)

Nickel 600 vs. S32760 Stainless Steel

Nickel 600 belongs to the nickel alloys classification, while S32760 stainless steel belongs to the iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 600 and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 3.4 to 35
28
Fatigue Strength, MPa 220 to 300
450
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 75
80
Shear Strength, MPa 430 to 570
550
Tensile Strength: Ultimate (UTS), MPa 650 to 990
850
Tensile Strength: Yield (Proof), MPa 270 to 760
620

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1350
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
22
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 9.0
4.1
Embodied Energy, MJ/kg 130
57
Embodied Water, L/kg 250
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
220
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 21 to 32
30
Strength to Weight: Bending, points 20 to 26
25
Thermal Diffusivity, mm2/s 3.6
4.0
Thermal Shock Resistance, points 19 to 29
23

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 14 to 17
24 to 26
Copper (Cu), % 0 to 0.5
0.5 to 1.0
Iron (Fe), % 6.0 to 10
57.6 to 65.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 72 to 80
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.010
Tungsten (W), % 0
0.5 to 1.0