MakeItFrom.com
Menu (ESC)

Nickel 601 vs. ASTM B817 Type I

Nickel 601 belongs to the nickel alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 601 and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 10 to 38
4.0 to 13
Fatigue Strength, MPa 220 to 380
360 to 520
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 660 to 890
770 to 960
Tensile Strength: Yield (Proof), MPa 290 to 800
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1100
340
Melting Completion (Liquidus), °C 1410
1600
Melting Onset (Solidus), °C 1360
1550
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 11
7.1
Thermal Expansion, µm/m-K 14
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 49
36
Density, g/cm3 8.3
4.4
Embodied Carbon, kg CO2/kg material 8.0
38
Embodied Energy, MJ/kg 110
610
Embodied Water, L/kg 280
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 200
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 1630
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 22 to 30
48 to 60
Strength to Weight: Bending, points 20 to 25
42 to 49
Thermal Diffusivity, mm2/s 2.8
2.9
Thermal Shock Resistance, points 17 to 23
54 to 68

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
5.5 to 6.8
Carbon (C), % 0 to 0.1
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 7.7 to 20
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 58 to 63
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 0 to 0.5
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4