MakeItFrom.com
Menu (ESC)

Nickel 601 vs. C355.0 Aluminum

Nickel 601 belongs to the nickel alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 601 and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 10 to 38
2.7 to 3.8
Fatigue Strength, MPa 220 to 380
76 to 84
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 660 to 890
290 to 310
Tensile Strength: Yield (Proof), MPa 290 to 800
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
620
Melting Onset (Solidus), °C 1360
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
39
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 49
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 280
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 200
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 1630
290 to 380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 22 to 30
30 to 32
Strength to Weight: Bending, points 20 to 25
36 to 37
Thermal Diffusivity, mm2/s 2.8
60
Thermal Shock Resistance, points 17 to 23
13 to 14

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
91.7 to 94.1
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 1.0
1.0 to 1.5
Iron (Fe), % 7.7 to 20
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 58 to 63
0
Silicon (Si), % 0 to 0.5
4.5 to 5.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15